2.2 The Inverse of a Matrix

The inverse of a real number a is denoted by a^{-1}. For example, $7^{-1} = 1/7$ and

$$7 \cdot 7^{-1} = 7^{-1} \cdot 7 = 1$$

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C satisfying

$$CA = AC = I_n$$

where I_n is the $n \times n$ identity matrix. We call C the inverse of A.

FACT If A is invertible, then the inverse is unique.

Proof: Assume B and C are both inverses of A. Then

$$B = BI = B(\text{____}) = (\text{____})\text{____} = I\text{____} = C.$$

So the inverse is unique since any two inverses coincide. ■

The inverse of A is usually denoted by A^{-1}.

We have

$$AA^{-1} = A^{-1}A = I_n$$

Not all $n \times n$ matrices are invertible. A matrix which is not invertible is sometimes called a singular matrix. An invertible matrix is called nonsingular matrix.
Theorem 4
Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). If \(ad - bc \neq 0 \), then \(A \) is invertible and
\[
A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
\]
If \(ad - bc = 0 \), then \(A \) is not invertible.

Assume \(A \) is any invertible matrix and we wish to solve \(Ax = b \). Then
\[
______Ax = _____b \quad \text{and so}
\]
\[
Ix = _______ \text{ or } x = _______.
\]
Suppose \(w \) is also a solution to \(Ax = b \). Then \(Aw = b \) and
\[
______Aw = _____b \quad \text{which means} \quad w = A^{-1}b.
\]
So, \(w = A^{-1}b \), which is in fact the same solution.

We have proved the following result:

Theorem 5
If \(A \) is an invertible \(n \times n \) matrix, then for each \(b \) in \(\mathbb{R}^n \), the equation \(Ax = b \) has the unique solution \(x = A^{-1}b \).
EXAMPLE: Use the inverse of $A = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$ to solve

$$
-7x_1 + 3x_2 = 2 \\
5x_1 - 2x_2 = 1
$$

Solution: Matrix form of the linear system:

$$
\begin{bmatrix}
-7 & 3 \\
5 & -2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
2 \\
1
\end{bmatrix}
$$

$$
A^{-1} = \frac{1}{14-15}
\begin{bmatrix}
-2 & -3 \\
-5 & -7
\end{bmatrix}
=
\begin{bmatrix}
2 & 3 \\
5 & 7
\end{bmatrix}
$$

$$
x = A^{-1}b =
\begin{bmatrix}
2 & 3 \\
5 & 7
\end{bmatrix}
\begin{bmatrix}
\end{bmatrix}
=
\begin{bmatrix}
\end{bmatrix}
$$
Theorem 6 Suppose A and B are invertible. Then the following results hold:

a. A^{-1} is invertible and $(A^{-1})^{-1} = A$ (i.e. A is the inverse of A^{-1}).

b. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

c. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Partial proof of part b:

$$(AB)(B^{-1}A^{-1}) = A(\underline{\quad})A^{-1}$$

$$= A(\underline{\quad})A^{-1} = \underline{\quad} = \underline{\quad}.$$

Similarly, one can show that $(B^{-1}A^{-1})(AB) = I$.

Theorem 6, part b can be generalized to three or more invertible matrices:

$$(ABC)^{-1} = \underline{\quad}$$

Earlier, we saw a formula for finding the inverse of a 2×2 invertible matrix. How do we find the inverse of an invertible $n \times n$ matrix? To answer this question, we first look at elementary matrices.
Elementary Matrices

Definition

An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

EXAMPLE: Let $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$,

$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

E_1, E_2, and E_3 are elementary matrices. Why?
Observe the following products and describe how these products can be obtained by elementary row operations on A.

\[
E_1A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
= \begin{bmatrix}
a & b & c \\
2d & 2e & 2f \\
g & h & i
\end{bmatrix}
\]

\[
E_2A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
= \begin{bmatrix}
a & b & c \\
g & h & i \\
d & e & f
\end{bmatrix}
\]

\[
E_3A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
= \begin{bmatrix}
a & b & c \\
d & e & f \\
3a + g & 3b + h & 3c + i
\end{bmatrix}
\]

*If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_m.**
Elementary matrices are *invertible* because row operations are *reversible*. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

For example,

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \quad E_3^{-1} = \begin{bmatrix} \end{bmatrix}$$
Example: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$. Then

$$E_1A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$E_2(E_1A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

$$E_3(E_2E_1A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So

$$E_3E_2E_1A = I_3.$$

Then multiplying on the right by A^{-1}, we get

$$E_3E_2E_1A A^{-1} = I_3 A^{-1}.$$

So

$$E_3E_2E_1I_3 = A^{-1}.$$
The elementary row operations that row reduce A to I_n are the same elementary row operations that transform I_n into A^{-1}.

Theorem 7

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n, and in this case, any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1}.

Algorithm for finding A^{-1}

Place A and I side-by-side to form an augmented matrix $[A \ I]$. Then perform row operations on this matrix (which will produce identical operations on A and I). So by Theorem 7:

$$[A \ I] \text{ will row reduce to } [I \ A^{-1}]$$

or A is not invertible.

EXAMPLE: Find the inverse of $A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, if it exists.

Solution:

$$[A \ I] = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$
Order of multiplication is important!

EXAMPLE Suppose \(A, B, C, \) and \(D \) are invertible \(n \times n \) matrices and \(A = B(D - I_n)C \).

Solve for \(D \) in terms of \(A, B, C \) and \(D \).

Solution:

\[
\begin{align*}
 \quad A \quad & = \quad B(D - I_n)C \\
 D - I_n & = B^{-1}A C^{-1} \\
 D - I_n + \quad & = B^{-1}A C^{-1} + \quad \\
 D & = \quad \quad \quad \quad \\
\end{align*}
\]