2.3 Characterizations of Invertible Matrices

Theorem 8 (The Invertible Matrix Theorem)

Let A be a square $n \times n$ matrix. The following statements are equivalent (i.e., for a given A, they are either all true or all false).

a. A is an invertible matrix.
b. A is row equivalent to I_n.
c. A has n pivot positions.
d. The equation $Ax = 0$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $x \rightarrow Ax$ is one-to-one.
g. The equation $Ax = b$ has at least one solution for each b in \mathbb{R}^n.
h. The columns of A span \mathbb{R}^n.
i. The linear transformation $x \rightarrow Ax$ maps \mathbb{R}^n onto \mathbb{R}^n.
j. There is an $n \times n$ matrix C such that $CA = I_n$.
k. There is an $n \times n$ matrix D such that $AD = I_n$.
l. A^T is an invertible matrix.
EXAMPLE: Use the Invertible Matrix Theorem to determine if A is invertible, where

$$
A = \begin{bmatrix}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{bmatrix}.
$$

\textit{Solution}

\[
A = \begin{bmatrix}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{bmatrix} \sim \cdots \sim \left[
\begin{array}{ccc}
1 & -3 & 0 \\
0 & -1 & 1 \\
0 & 0 & 16
\end{array}
\right]
\]

3 pivots positions

\textit{Circle correct conclusion:} Matrix A \textit{is} / \textit{is not} invertible.
EXAMPLE: Suppose H is a 5×5 matrix and suppose there is a vector v in \mathbb{R}^5 which is not a linear combination of the columns of H. What can you say about the number of solutions to $Hx = 0$?

Solution
Since v in \mathbb{R}^5 is not a linear combination of the columns of H, the columns of H do not __________ \mathbb{R}^5.

So by the Invertible Matrix Theorem, $Hx = 0$ has

______________________________.
Invertible Linear Transformations

For an invertible matrix A,

$$A^{-1}Ax = x \text{ for all } x \text{ in } \mathbb{R}^n$$

and

$$AA^{-1}x = x \text{ for all } x \text{ in } \mathbb{R}^n.$$

Pictures:
A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n$$

and

$$T(S(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n.$$

Theorem 9

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(x) = A^{-1}x$ is the unique function satisfying

$$S(T(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n$$

and

$$T(S(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n.$$