4.5 The Dimension of a Vector Space

THEOREM 9

If a vector space V has a basis $\beta = \{b_1, \ldots, b_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Suppose $\{u_1, \ldots, u_p\}$ is a set of vectors in V where $p > n$. Then the coordinate vectors $\{[u_1]_{\beta}, \ldots, [u_p]_{\beta}\}$ are in \mathbb{R}^n. Since $p > n$, $\{[u_1]_{\beta}, \ldots, [u_p]_{\beta}\}$ are linearly dependent and therefore $\{u_1, \ldots, u_p\}$ are linearly dependent. \blacksquare

THEOREM 10

If a vector space V has a basis of n vectors, then every basis of V must consist of n vectors.

Proof: Suppose β_1 is a basis for V consisting of exactly n vectors. Now suppose β_2 is any other basis for V. By the definition of a basis, we know that β_1 and β_2 are both linearly independent sets.

By Theorem 9, if β_1 has more vectors than β_2, then ______ is a linearly dependent set (which cannot be the case).

Again by Theorem 9, if β_2 has more vectors than β_1, then ______ is a linearly dependent set (which cannot be the case).

Therefore β_2 has exactly n vectors also. \blacksquare
DEFINITION

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as $\dim V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be 0. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

EXAMPLE: The standard basis for P_3 is $\{\}$.

$\dim P_3 = _____.$

In general, $\dim P_n = n + 1$.

EXAMPLE: The standard basis for R^n is $\{e_1, \ldots, e_n\}$ where e_1, \ldots, e_n are the columns of I_n. So, for example, $\dim R^3 = 3$.

2
EXAMPLE: Find a basis and the dimension of the subspace

\[W = \left\{ \begin{bmatrix} a + b + 2c \\ 2a + 2b + 4c + d \\ b + c + d \\ 3a + 3c + d \end{bmatrix} : a, b, c, d \text{ are real} \right\}. \]

Solution: Since

\[
\begin{bmatrix} a + b + 2c \\ 2a + 2b + 4c + d \\ b + c + d \\ 3a + 3c + d \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix},
\]

\[W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}, \]

where \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}. \]

- Note that \(\mathbf{v}_3 \) is a linear combination of \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \), so by the Spanning Set Theorem, we may discard \(\mathbf{v}_3 \).

- \(\mathbf{v}_4 \) is not a linear combination of \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \). So \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\} \) is a basis for \(W \). Also, \(\dim W = _\).
EXAMPLE: *Dimensions of subspaces of \mathbb{R}^3*

0-*dimensional subspace* contains only the zero vector
\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\]

1-*dimensional subspaces.* $\text{Span}\{v\}$ where $v \neq 0$ is in \mathbb{R}^3.

These subspaces are ______________ through the origin.

2-*dimensional subspaces.* $\text{Span}\{u, v\}$ where u and v are in \mathbb{R}^3 and are not multiples of each other.

These subspaces are ______________ through the origin.

3-*dimensional subspaces.* $\text{Span}\{u, v, w\}$ where u, v, w are linearly independent vectors in \mathbb{R}^3. This subspace is \mathbb{R}^3 itself because the columns of $A = \begin{bmatrix} u & v & w \end{bmatrix}$ span \mathbb{R}^3 according to the IMT.
THEOREM 11

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and \[\dim H \leq \dim V. \]

EXAMPLE: Let $H = \text{span} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Then H is a subspace of \mathbb{R}^3 and $\dim H < \dim \mathbb{R}^3$.

We could expand the spanning set $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ to form a basis for \mathbb{R}^3.

THEOREM 12 THE BASIS THEOREM

Let V be a p–dimensional vector space, $p \geq 1$. Any linearly
independent set of exactly p vectors in V is automatically a
basis for V. Any set of exactly p vectors that spans V is
automatically a basis for V.

EXAMPLE: Show that $\{t, 1 - t, 1 + t - t^2\}$ is a basis for P_2.

Solution: Let $v_1 = t, v_2 = 1 - t, v_3 = 1 + t - t^2$ and $\beta = \{1, t, t^2\}$.

Corresponding coordinate vectors

$$[v_1]_{\beta} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, [v_2]_{\beta} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, [v_3]_{\beta} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$[v_2]_{\beta}$ is not a multiple of $[v_1]_{\beta}$

$[v_3]_{\beta}$ is not a linear combination of $[v_1]_{\beta}$ and $[v_2]_{\beta}$

$\Rightarrow \{[v_1]_{\beta}, [v_2]_{\beta}, [v_3]_{\beta}\}$ is linearly independent and therefore
$\{v_1, v_2, v_3\}$ is also linearly independent.

Since $\dim P_2 = 3$, $\{v_1, v_2, v_3\}$ is a basis for P_2 according to The
Basis Theorem.
Dimensions of Col A and Nul A

Recall our techniques to find basis sets for column spaces and null spaces.

EXAMPLE: Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix}$. Find dim Col A and dim Nul A.

Solution

\[
\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}
\]

So \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 7 \\ 8 \end{bmatrix} \right\} \) is a basis for Col A and $\text{dim Col } A = 2$.
Now solve $Ax = 0$ by row-reducing the corresponding augmented matrix. Then we arrive at

$$
\begin{bmatrix}
1 & 2 & 3 & 4 & 0 \\
2 & 4 & 7 & 8 & 0
\end{bmatrix}
\sim \ldots \sim
\begin{bmatrix}
1 & 2 & 0 & 4 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
$$

$x_1 = -2x_2 - 4x_4$

$x_3 = 0$

and

$$
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
x_2 \\
 \\
 \\

\end{bmatrix}
+
\begin{bmatrix}
-2 \\
 \\
 \\

\end{bmatrix}
+
\begin{bmatrix}
-4 \\
 \\
 \\

\end{bmatrix}
$$

So $$\left\{ \begin{bmatrix}
-2 \\
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-4 \\
0 \\
0 \\
1
\end{bmatrix} \right\}$$ is a basis for $\text{Nul } A$ and

$\text{dim Nul } A = 2$.

Note

$$
\begin{align*}
\text{dim Col } A &= \text{number of pivot columns of } A \\
\text{dim Nul } A &= \text{number of free variables of } A
\end{align*}
$$