Section 4.6 Rank

The set of all linear combinations of the row vectors of a matrix \(A \) is called the row space of \(A \) and is denoted by Row \(A \).

EXAMPLE: Let

\[
A = \begin{bmatrix}
-1 & 2 & 3 & 6 \\
2 & -5 & -6 & -12 \\
1 & -3 & -3 & -6
\end{bmatrix}
\]

and

\[
r_1 = (-1, 2, 3, 6) \\
r_2 = (2,-5,-6,-12) \\
r_3 = (1,-3,-3,-6)
\]

Row \(A = \text{Span}\{r_1, r_2, r_3\} \) (a subspace of \(\mathbb{R}^4 \))

While it is natural to express row vectors horizontally, they can also be written as column vectors if it is more convenient. Therefore

\[
\text{Col} \ A^T = \text{Row} \ A.
\]

When we use row operations to reduce matrix \(A \) to matrix \(B \), we are taking linear combinations of the rows of \(A \) to come up with \(B \). We could reverse this process and use row operations on \(B \) to get back to \(A \). Because of this, the row space of \(A \) equals the row space of \(B \).

THEOREM 13

If two matrices \(A \) and \(B \) are row equivalent, then their row spaces are the same. If \(B \) is in echelon form, the nonzero rows of \(B \) form a basis for the row space of \(A \) as well as \(B \).
EXAMPLE: The matrices

\[A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \]
\[B = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

are row equivalent. Find a basis for row space, column space and null space of \(A \). Also state the dimension of each.

Basis for Row \(A \) :

\[\{ \} \]

\[\text{dim Row } A : \underline{_ _ _} \]

Basis for Col \(A \) :

\[\left\{ \begin{bmatrix} _ \\ _ \\ _ \end{bmatrix}, \begin{bmatrix} _ \\ _ \end{bmatrix} \right\} \]

\[\text{dim Col } A : \underline{_ _ _} \]
To find Nul A, solve $Ax = 0$ first:

$$
\begin{bmatrix}
-1 & 2 & 3 & 6 & 0 \\
2 & -5 & -6 & -12 & 0 \\
1 & -3 & -3 & -6 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
-1 & 2 & 3 & 6 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}

\sim
\begin{bmatrix}
1 & 0 & -3 & -6 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
3x_3 + 6x_4 \\
0 \\
x_3 \\
x_4
\end{bmatrix}
= x_3 \begin{bmatrix}
3 \\
0 \\
1 \\
0
\end{bmatrix} + x_4 \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}

Basis for Nul A: \{ \begin{bmatrix}
3 \\
0 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
6 \\
0 \\
0 \\
1
\end{bmatrix} \}

and dim Nul $A = _______
Note the following:
\[\dim \text{Col } A = \# \text{ of pivots of } A = \# \text{ of nonzero rows in } B = \dim \text{Row } A.\]

\[\dim \text{Nul } A = \# \text{ of free variables} = \# \text{ of nonpivot columns of } A.\]

DEFINITION
The rank of \(A \) is the dimension of the column space of \(A \).

\[\text{rank } A = \dim \text{Col } A = \# \text{ of pivot columns of } A = \dim \text{Row } A.\]

\[
\begin{align*}
\text{rank } A &+ \dim \text{Nul } A = n \\
\updownarrow & \quad \updownarrow \\
\# \text{ of pivot columns of } A &+ \# \text{ of nonpivot columns of } A
\end{align*}
\]

THEOREM 14 THE RANK THEOREM
The dimensions of the column space and the row space of an \(m \times n \) matrix \(A \) are equal. This common dimension, the rank of \(A \), also equals the number of pivot positions in \(A \) and satisfies the equation

\[\text{rank } A + \dim \text{Nul } A = n.\]
Since Row $A = \text{Col } A^T$,

$$\text{rank } A = \text{rank } A^T.$$

EXAMPLE: Suppose that a 5×8 matrix A has rank 5. Find dim Nul A, dim Row A and rank A^T. Is Col $A = \mathbb{R}^5$?

Solution:

$$\begin{align*}
\underline{\text{rank } A} + \underline{\text{dim Nul } A} &= \underline{n} \\
5 &+ \ ? &= 8
\end{align*}$$

$$5 + \dim \text{Nul } A = 8 \quad \Rightarrow \quad \dim \text{Nul } A = ____$$

$$\dim \text{Row } A = \text{rank } A = ____$$

$$\Rightarrow \quad \text{rank } A^T = \text{rank } ____ = ____$$

Since rank $A = \#$ of pivots in $A = 5$, there is a pivot in every row. So the columns of A span \mathbb{R}^5 (by Theorem 4, page 43). Hence Col $A = \mathbb{R}^5$.
EXAMPLE: For a 9×12 matrix A, find the smallest possible value of $\dim \text{Nul} \ A$.

Solution:

$$\text{rank} \ A + \dim \text{Nul} \ A = 12$$

$$\dim \text{Nul} \ A = 12 - \text{rank} \ A$$

largest possible value = _____

smallest possible value of $\dim \text{Nul} \ A = _____$
Visualizing Row A and Nul A

EXAMPLE: Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 2 \end{bmatrix}$. One can easily verify the following:

Basis for Nul $A = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and therefore Nul A is a plane in \mathbb{R}^3.

Basis for Row $A = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and therefore Row A is a line in \mathbb{R}^3.

Basis for Col $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and therefore Col A is a line in \mathbb{R}^2.

Basis for Nul $A^T = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and therefore Nul A^T is a line in \mathbb{R}^2.
Subspaces Nul A and Row A

Subspaces Nul A^T and Col A
The Rank Theorem provides us with a powerful tool for determining information about a system of equations.

EXAMPLE: A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly 4 of the unknowns are free variables. Can the scientist be *certain* that any associated nonhomogeneous system (with the same coefficients) has a solution?

Solution: Recall that

\[
\text{rank } A = \dim \text{ Col } A = \# \text{ of pivot columns of } A
\]

\[
\dim \text{ Nul } A = \# \text{ of free variables}
\]

In this case \(Ax = 0\) of where \(A\) is \(50 \times 54\).

By the rank theorem,

\[
\text{rank } A + \underline{\text{_______}} = \underline{\text{_______}}
\]

or

\[
\text{rank } A = \underline{\text{_______}}.
\]

So any nonhomogeneous system \(Ax = b\) has a solution because there is a pivot in every row.
THE INVERTIBLE MATRIX THEOREM (continued)

Let A be a square $n \times n$ matrix. The following statements are equivalent:

m. The columns of A form a basis for \mathbb{R}^n

n. $\text{Col } A = \mathbb{R}^n$

o. $\dim \text{Col } A = n$

p. $\text{rank } A = n$

q. $\text{Nul } A = \{0\}$

r. $\dim \text{Nul } A = 0$